On Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations
نویسندگان
چکیده
Inspired by the penalization of the domain approach of Lions & Sznitman, we give a sense to Neumann and oblique derivatives boundary value problems for nonlocal, possibly degenerate elliptic equations. Two different cases are considered: (i) homogeneous Neumann boundary conditions in convex, possibly non-smooth and unbounded domains, and (ii) general oblique derivatives boundary conditions in smooth, bounded, and possibly non-convex domains. In each case we give apropriate definitions of viscosity solutions and prove uniqueness of solutions of the corresponding boundary value problems. We prove that these boundary value problems arise in the penalization of the domain limit from whole space problems and obtain as a corollary the existence of solutions of these problems.
منابع مشابه
Nonlocal Problems with Neumann Boundary Conditions
We introduce a new Neumann problem for the fractional Laplacian arising from a simple probabilistic consideration, and we discuss the basic properties of this model. We can consider both elliptic and parabolic equations in any domain. In addition, we formulate problems with nonhomogeneous Neumann conditions, and also with mixed Dirichlet and Neumann conditions, all of them having a clear probab...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملInfluences of Small-Scale Effect and Boundary Conditions on the Free Vibration of Nano-Plates: A Molecular Dynamics Simulation
This paper addresses the influence of boundary conditions and small-scale effect on the free vibration of nano-plates using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used to obtain fundamental frequencies of single layered graphene sheets (SLGSs) which modeled in this paper as the mo...
متن کاملA Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems
Abstract. We develop a calculus for nonlocal operators that mimics Gauss’ theorem and the Green’s identities of the classical vector calculus. The operators we define do not involve the derivatives. We then apply the nonlocal calculus to define variational formulations of nonlocal “boundaryvalue” problems that mimic the Dirichlet and Neumann problems for second-order scalar elliptic partial dif...
متن کاملRegularity of Solutions of Obstacle Problems for Elliptic Equations with Oblique Boundary Conditions
Much has been written about various obstacle problems in the context of variational inequalities. In particular, if the obstacle is smooth enough and if the coefficients of associated elliptic operator satisfy appropriate conditions, then the solution of the obstacle problem has continuous first derivatives. For a general class of obstacle problems, we show here that this regularity is attained...
متن کامل